×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13237v1 Announce Type: new
Abstract: With the increasing emphasis on user privacy protection, biometric recognition based on federated learning have become the latest research hotspot. However, traditional federated learning methods cannot be directly applied to finger vein recognition, due to heterogeneity of data and open-set verification. Therefore, only a few application cases have been proposed. And these methods still have two drawbacks. (1) Uniform model results in poor performance in some clients, as the finger vein data is highly heterogeneous and non-Independently Identically Distributed (non-IID). (2) On individual client, a large amount of time is underutilized, such as the time to wait for returning model from server. To address those problems, this paper proposes a Personalized and Asynchronous Federated Learning for Finger Vein Recognition (PAFedFV) framework. PAFedFV designs personalized model aggregation method to solve the heterogeneity among non-IID data. Meanwhile, it employs an asynchronized training module for clients to utilize their waiting time. Finally, extensive experiments on six finger vein datasets are conducted. Base on these experiment results, the impact of non-IID finger vein data on performance of federated learning are analyzed, and the superiority of PAFedFV in accuracy and robustness are demonstrated.

Click here to read this post out
ID: 816663; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: