×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13239v1 Announce Type: new
Abstract: Medical image segmentation plays an important role in many image-guided clinical approaches. However, existing segmentation algorithms mostly rely on the availability of fully annotated images with pixel-wise annotations for training, which can be both labor-intensive and expertise-demanding, especially in the medical imaging domain where only experts can provide reliable and accurate annotations. To alleviate this challenge, there has been a growing focus on developing segmentation methods that can train deep models with weak annotations, such as image-level, bounding boxes, scribbles, and points. The emergence of vision foundation models, notably the Segment Anything Model (SAM), has introduced innovative capabilities for segmentation tasks using weak annotations for promptable segmentation enabled by large-scale pre-training. Adopting foundation models together with traditional learning methods has increasingly gained recent interest research community and shown potential for real-world applications. In this paper, we present a comprehensive survey of recent progress on annotation-efficient learning for medical image segmentation utilizing weak annotations before and in the era of foundation models. Furthermore, we analyze and discuss several challenges of existing approaches, which we believe will provide valuable guidance for shaping the trajectory of foundational models to further advance the field of medical image segmentation.

Click here to read this post out
ID: 816665; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: