×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13249v1 Announce Type: new
Abstract: An additive code is an $\mathbb{F}_q$-linear subspace of $\mathbb{F}_{q^m}^n$ over $\mathbb{F}_{q^m}$, which is not a linear subspace over $\mathbb{F}_{q^m}$. Linear complementary pairs(LCP) of codes have important roles in cryptography, such as increasing the speed and capacity of digital communication and strengthening security by improving the encryption necessities to resist cryptanalytic attacks. This paper studies an algebraic structure of additive complementary pairs (ACP) of codes over $\mathbb{F}_{q^m}$. Further, we characterize an ACP of codes in analogous generator matrices and parity check matrices. Additionally, we identify a necessary condition for an ACP of codes. Besides, we present some constructions of an ACP of codes over $\mathbb{F}_{q^m}$ from LCP codes over $\mathbb{F}_{q^m}$ and also from an LCP of codes over $\mathbb{F}_q$. Finally, we study the constacyclic ACP of codes over $\mathbb{F}_{q^m}$ and the counting of the constacyclic ACP of codes. As an application of our study, we consider a class of quantum codes called Entanglement Assisted Quantum Error Correcting Code (EAQEC codes). As a consequence, we derive some EAQEC codes.

Click here to read this post out
ID: 816669; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: