×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13258v1 Announce Type: new
Abstract: Conventional approaches to enhancing movement coordination, such as providing instructions and visual feedback, are often inadequate in complex motor tasks with multiple degrees of freedom (DoFs). To effectively address coordination deficits in such complex motor systems, it becomes imperative to develop interventions grounded in a model of human motor learning; however, modeling such learning processes is challenging due to the large DoFs. In this paper, we present a computational motor learning model that leverages the concept of motor synergies to extract low-dimensional learning representations in the high-dimensional motor space and the internal model theory of motor control to capture both fast and slow motor learning processes. We establish the model's convergence properties and validate it using data from a target capture game played by human participants. We study the influence of model parameters on several motor learning trade-offs such as speed-accuracy, exploration-exploitation, satisficing, and flexibility-performance, and show that the human motor learning system tunes these parameters to optimize learning and various output performance metrics.

Click here to read this post out
ID: 816673; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: