×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13340v1 Announce Type: new
Abstract: Code generation with Large Language Models (LLMs) has been extensively studied and achieved remarkable progress. As a complementary aspect to code generation, test case generation is of crucial importance in ensuring the quality and reliability of code. However, using LLMs as test case generators has been much less explored. Current research along this line primarily focuses on enhancing code generation with assistance from test cases generated by LLMs, while the performance of LLMs in test case generation alone has not been comprehensively examined. To bridge this gap, we conduct extensive experiments to study how well LLMs can generate high-quality test cases. We find that as the problem difficulty increases, state-of-the-art LLMs struggle to generate correct test cases, largely due to their inherent limitations in computation and reasoning. To mitigate this issue, we further propose a multi-agent framework called \emph{TestChain} that decouples the generation of test inputs and test outputs. Notably, TestChain uses a ReAct format conversation chain for LLMs to interact with a Python interpreter in order to provide more accurate test outputs. Our results indicate that TestChain outperforms the baseline by a large margin. Particularly, in terms of the accuracy of test cases, TestChain using GPT-4 as the backbone achieves a 13.84\% improvement over the baseline on the LeetCode-hard dataset.

Click here to read this post out
ID: 816710; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: