×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13408v1 Announce Type: new
Abstract: The advancement of deep learning has driven notable progress in remote sensing semantic segmentation. Attention mechanisms, while enabling global modeling and utilizing contextual information, face challenges of high computational costs and require window-based operations that weaken capturing long-range dependencies, hindering their effectiveness for remote sensing image processing. In this letter, we propose AMMUNet, a UNet-based framework that employs multi-scale attention map merging, comprising two key innovations: the granular multi-head self-attention (GMSA) module and the attention map merging mechanism (AMMM). GMSA efficiently acquires global information while substantially mitigating computational costs in contrast to global multi-head self-attention mechanism. This is accomplished through the strategic utilization of dimension correspondence to align granularity and the reduction of relative position bias parameters, thereby optimizing computational efficiency. The proposed AMMM effectively combines multi-scale attention maps into a unified representation using a fixed mask template, enabling the modeling of global attention mechanism. Experimental evaluations highlight the superior performance of our approach, achieving remarkable mean intersection over union (mIoU) scores of 75.48\% on the challenging Vaihingen dataset and an exceptional 77.90\% on the Potsdam dataset, demonstrating the superiority of our method in precise remote sensing semantic segmentation. Codes are available at https://github.com/interpretty/AMMUNet.

Click here to read this post out
ID: 816743; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: