×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13500v1 Announce Type: new
Abstract: Regression is typically treated as a curve-fitting process where the goal is to fit a prediction function to data. With the help of conditional generative adversarial networks, we propose to solve this age-old problem in a different way; we aim to learn a prediction function whose outputs, when paired with the corresponding inputs, are indistinguishable from feature-label pairs in the training dataset. We show that this approach to regression makes fewer assumptions on the distribution of the data we are fitting to and, therefore, has better representation capabilities. We draw parallels with generalized linear models in statistics and show how our proposal serves as an extension of them to neural networks. We demonstrate the superiority of this new approach to standard regression with experiments on multiple synthetic and publicly available real-world datasets, finding encouraging results, especially with real-world heavy-tailed regression datasets. To make our work more reproducible, we release our source code. Link to repository: https://anonymous.4open.science/r/regressGAN-7B71/

Click here to read this post out
ID: 816787; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: