×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13567v1 Announce Type: new
Abstract: A major challenge in Explainable AI is in correctly interpreting activations of hidden neurons: accurate interpretations would help answer the question of what a deep learning system internally detects as relevant in the input, demystifying the otherwise black-box nature of deep learning systems. The state of the art indicates that hidden node activations can, in some cases, be interpretable in a way that makes sense to humans, but systematic automated methods that would be able to hypothesize and verify interpretations of hidden neuron activations are underexplored. This is particularly the case for approaches that can both draw explanations from substantial background knowledge, and that are based on inherently explainable (symbolic) methods.
In this paper, we introduce a novel model-agnostic post-hoc Explainable AI method demonstrating that it provides meaningful interpretations. Our approach is based on using a Wikipedia-derived concept hierarchy with approximately 2 million classes as background knowledge, and utilizes OWL-reasoning-based Concept Induction for explanation generation. Additionally, we explore and compare the capabilities of off-the-shelf pre-trained multimodal-based explainable methods.
Our results indicate that our approach can automatically attach meaningful class expressions as explanations to individual neurons in the dense layer of a Convolutional Neural Network. Evaluation through statistical analysis and degree of concept activation in the hidden layer show that our method provides a competitive edge in both quantitative and qualitative aspects compared to prior work.

Click here to read this post out
ID: 816820; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: