×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13575v1 Announce Type: new
Abstract: In federated learning, particularly in cross-device scenarios, secure aggregation has recently gained popularity as it effectively defends against inference attacks by malicious aggregators. However, secure aggregation often requires additional communication overhead and can impede the convergence rate of the global model, which is particularly challenging in wireless network environments with extremely limited bandwidth. Therefore, achieving efficient communication compression under the premise of secure aggregation presents a highly challenging and valuable problem. In this work, we propose a novel uplink communication compression method for federated learning, named FedMPQ, which is based on multi shared codebook product quantization.Specifically, we utilize updates from the previous round to generate sufficiently robust codebooks. Secure aggregation is then achieved through trusted execution environments (TEE) or a trusted third party (TTP).In contrast to previous works, our approach exhibits greater robustness in scenarios where data is not independently and identically distributed (non-IID) and there is a lack of sufficient public data. The experiments conducted on the LEAF dataset demonstrate that our proposed method achieves 99% of the baseline's final accuracy, while reducing uplink communications by 90-95%

Click here to read this post out
ID: 816825; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: