×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13657v1 Announce Type: new
Abstract: In this paper, we address the unexplored question of temporal sentence localization in human motions (TSLM), aiming to locate a target moment from a 3D human motion that semantically corresponds to a text query. Considering that 3D human motions are captured using specialized motion capture devices, motions with only a few joints lack complex scene information like objects and lighting. Due to this character, motion data has low contextual richness and semantic ambiguity between frames, which limits the accuracy of predictions made by current video localization frameworks extended to TSLM to only a rough level. To refine this, we devise two novel label-prior-assisted training schemes: one embed prior knowledge of foreground and background to highlight the localization chances of target moments, and the other forces the originally rough predictions to overlap with the more accurate predictions obtained from the flipped start/end prior label sequences during recovery training. We show that injecting label-prior knowledge into the model is crucial for improving performance at high IoU. In our constructed TSLM benchmark, our model termed MLP achieves a recall of 44.13 at IoU@0.7 on the BABEL dataset and 71.17 on HumanML3D (Restore), outperforming prior works. Finally, we showcase the potential of our approach in corpus-level moment retrieval. Our source code is openly accessible at https://github.com/eanson023/mlp.

Click here to read this post out
ID: 816868; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: