×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13667v1 Announce Type: new
Abstract: Printed mathematical expression recognition (MER) models are usually trained and tested using LaTeX-generated mathematical expressions (MEs) as input and the LaTeX source code as ground truth. As the same ME can be generated by various different LaTeX source codes, this leads to unwanted variations in the ground truth data that bias test performance results and hinder efficient learning. In addition, the use of only one font to generate the MEs heavily limits the generalization of the reported results to realistic scenarios. We propose a data-centric approach to overcome this problem, and present convincing experimental results: Our main contribution is an enhanced LaTeX normalization to map any LaTeX ME to a canonical form. Based on this process, we developed an improved version of the benchmark dataset im2latex-100k, featuring 30 fonts instead of one. Second, we introduce the real-world dataset realFormula, with MEs extracted from papers. Third, we developed a MER model, MathNet, based on a convolutional vision transformer, with superior results on all four test sets (im2latex-100k, im2latexv2, realFormula, and InftyMDB-1), outperforming the previous state of the art by up to 88.3%.

Click here to read this post out
ID: 816873; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: