×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13674v1 Announce Type: new
Abstract: An $(m,n,R)$-de Bruijn covering array (dBCA) is a doubly periodic $M \times N$ array over an alphabet of size $q$ such that the set of all its $m \times n$ windows form a covering code with radius $R$. An upper bound of the smallest array area of an $(m,n,R)$-dBCA is provided using a probabilistic technique which is similar to the one that was used for an upper bound on the length of a de Bruijn covering sequence. A folding technique to construct a dBCA from a de Bruijn covering sequence or de Bruijn covering sequences code is presented. Several new constructions that yield shorter de Bruijn covering sequences and $(m,n,R)$-dBCAs with smaller areas are also provided. These constructions are mainly based on sequences derived from cyclic codes, self-dual sequences, primitive polynomials, an interleaving technique, folding, and mutual shifts of sequences with the same covering radius. Finally, constructions of de Bruijn covering sequences codes are also discussed.

Click here to read this post out
ID: 816876; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: