×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13770v1 Announce Type: new
Abstract: Image classification is a fundamental task in computer vision, and the quest to enhance DNN accuracy without inflating model size or latency remains a pressing concern. We make a couple of advances in this regard, leading to a novel EncodeNet design and training framework. The first advancement involves Converting Autoencoders, a novel approach that transforms images into an easy-to-classify image of its class. Our prior work that applied the Converting Autoencoder and a simple classifier in tandem achieved moderate accuracy over simple datasets, such as MNIST and FMNIST. However, on more complex datasets like CIFAR-10, the Converting Autoencoder has a large reconstruction loss, making it unsuitable for enhancing DNN accuracy. To address these limitations, we generalize the design of Converting Autoencoders by leveraging a larger class of DNNs, those with architectures comprising feature extraction layers followed by classification layers. We incorporate a generalized algorithmic design of the Converting Autoencoder and intraclass clustering to identify representative images, leading to optimized image feature learning. Next, we demonstrate the effectiveness of our EncodeNet design and training framework, improving the accuracy of well-trained baseline DNNs while maintaining the overall model size. EncodeNet's building blocks comprise the trained encoder from our generalized Converting Autoencoders transferring knowledge to a lightweight classifier network - also extracted from the baseline DNN. Our experimental results demonstrate that EncodeNet improves the accuracy of VGG16 from 92.64% to 94.05% on CIFAR-10 and RestNet20 from 74.56% to 76.04% on CIFAR-100. It outperforms state-of-the-art techniques that rely on knowledge distillation and attention mechanisms, delivering higher accuracy for models of comparable size.

Click here to read this post out
ID: 816918; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: