×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13909v1 Announce Type: new
Abstract: Physics-Informed Neural Networks (PINNs) have emerged as a highly active research topic across multiple disciplines in science and engineering, including computational geomechanics. PINNs offer a promising approach in different applications where faster, near real-time or real-time numerical prediction is required. Examples of such areas in geomechanics include geotechnical design optimization, digital twins of geo-structures and stability prediction of monitored slopes. But there remain challenges in training of PINNs, especially for problems with high spatial and temporal complexity. In this paper, we study how the training of PINNs can be improved by using an ideal-ized poroelasticity problem as a demonstration example. A curriculum training strat-egy is employed where the PINN model is trained gradually by dividing the training data into intervals along the temporal dimension. We find that the PINN model with curriculum training takes nearly half the time required for training compared to con-ventional training over the whole solution domain. For the particular example here, the quality of the predicted solution was found to be good in both training approach-es, but it is anticipated that the curriculum training approach has the potential to offer a better prediction capability for more complex problems, a subject for further research.

Click here to read this post out
ID: 816988; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: