×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13982v1 Announce Type: new
Abstract: In this paper, we propose the Liquid-Graph Time-constant (LGTC) network, a continuous graph neural network(GNN) model for control of multi-agent systems based on therecent Liquid Time Constant (LTC) network. We analyse itsstability leveraging contraction analysis and propose a closed-form model that preserves the model contraction rate and doesnot require solving an ODE at each iteration. Compared todiscrete models like Graph Gated Neural Networks (GGNNs),the higher expressivity of the proposed model guaranteesremarkable performance while reducing the large amountof communicated variables normally required by GNNs. Weevaluate our model on a distributed multi-agent control casestudy (flocking) taking into account variable communicationrange and scalability under non-instantaneous communication

Click here to read this post out
ID: 817021; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: