×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13997v1 Announce Type: new
Abstract: Given an undirected graph G, the edge orientation problem asks for assigning a direction to each edge to convert G into a directed graph. The aim is to minimize the maximum out degree of a vertex in the resulting directed graph. This problem, which is solvable in polynomial time, arises in many applications. An ongoing challenge in edge orientation algorithms is their scalability, particularly in handling large-scale networks with millions or billions of edges efficiently. We propose a novel algorithmic framework based on finding and manipulating simple paths to face this challenge. Our framework is based on an existing algorithm and allows many algorithmic choices. By carefully exploring these choices and engineering the underlying algorithms, we obtain an implementation which is more efficient and scalable than the current state-of-the-art. Our experiments demonstrate significant performance improvements compared to state-of-the-art solvers. On average our algorithm is 6.59 times faster when compared to the state-of-the-art.

Click here to read this post out
ID: 817031; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 5
CC:
No creative common's license
Comments: