×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14006v1 Announce Type: new
Abstract: The proliferation of large-scale AI models trained on extensive datasets has revolutionized machine learning. With these models taking on increasingly central roles in various applications, the need to understand their behavior and enhance interpretability has become paramount. To investigate the impact of changes in training data on a pre-trained model, a common approach is leave-one-out retraining. This entails systematically altering the training dataset by removing specific samples to observe resulting changes within the model. However, retraining the model for each altered dataset presents a significant computational challenge, given the need to perform this operation for every dataset variation. In this paper, we introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages. During the offline training phase, we approximate the influence of training data on the target model through a distilled synset, formulated as a reversed gradient matching problem. For online evaluation, we expedite the leave-one-out process using the synset, which is then utilized to compute the attribution matrix based on the evaluation objective. Experimental evaluations, including training data attribution and assessments of data quality, demonstrate that our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.

Click here to read this post out
ID: 817035; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: