×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14012v1 Announce Type: new
Abstract: Security and stability challenges in future power systems with high penetration Inverter-Based Resources (IBR) have been anticipated as the main barrier to decolonization. Grid-following IBRs may become unstable under small disturbances in weak grids, while, during transient processes, system stability and protection may be jeopardized due to the lack of sufficient Short-Circuit Current (SCC). To solve these challenges and achieve decarbonization, the future system has to be carefully planned. However, it remains unclear how both small-signal and transient processes can be considered during the system planning stage. In this context, this paper proposes a coordinated planning model of different resources to enhance system-level stability. The system strength and SCC constraints are analytically derived by considering the different characteristics of synchronous units and IBRs, which are further effectively linearized through a novel data-driven approach, where an active sampling method is proposed to generate a representative data set. The significant economic value of the proposed coordinated planning framework in both system asset investment and system operation is demonstrated through detailed case studies.

Click here to read this post out
ID: 817038; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: