×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14025v1 Announce Type: new
Abstract: Multi-person pose estimation (MPPE) presents a formidable yet crucial challenge in computer vision. Most existing methods predominantly concentrate on isolated interaction either between instances or joints, which is inadequate for scenarios demanding concurrent localization of both instances and joints. This paper introduces a novel CNN-based single-stage method, named Dual-path Hierarchical Relation Network (DHRNet), to extract instance-to-joint and joint-to-instance interactions concurrently. Specifically, we design a dual-path interaction modeling module (DIM) that strategically organizes cross-instance and cross-joint interaction modeling modules in two complementary orders, enriching interaction information by integrating merits from different correlation modeling branches. Notably, DHRNet excels in joint localization by leveraging information from other instances and joints. Extensive evaluations on challenging datasets, including COCO, CrowdPose, and OCHuman datasets, showcase DHRNet's state-of-the-art performance. The code will be released at https://github.com/YHDang/dhrnet-multi-pose-estimation.

Click here to read this post out
ID: 817044; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: