×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14056v1 Announce Type: new
Abstract: In this paper, we characterize the fundamental limits of a communication system with three users (i.e., three transmitters) and a single receiver where communication from two covert users must remain undetectable to an external warden. Our results show a tradeoff between the highest rates that are simultaneously achievable for the three users. They further show that the presence of a non-covert user in the system can enhance the capacities of the covert users under stringent secret-key constraints. To derive our fundamental limits, we provide an information-theoretic converse proof and present a coding scheme that achieves the performance of our converse result. Our coding scheme is based on multiplexing different code phases, which seems to be essential to exhaust the entire tradeoff region between the rates at the covert and the two non-covert users. This property is reminiscent of the setup with multiple non-covert users, where multiplexing is also required to exhaust the entire rate-region.

Click here to read this post out
ID: 817063; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: