×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14062v1 Announce Type: new
Abstract: The Handwritten Text Recognition problem has been a challenge for researchers for the last few decades, especially in the domain of computer vision, a subdomain of pattern recognition. Variability of texts amongst writers, cursiveness, and different font styles of handwritten texts with degradation of historical text images make it a challenging problem. Recognizing scanned document images in neural network-based systems typically involves a two-step approach: segmentation and recognition. However, this method has several drawbacks. These shortcomings encompass challenges in identifying text regions, analyzing layout diversity within pages, and establishing accurate ground truth segmentation. Consequently, these processes are prone to errors, leading to bottlenecks in achieving high recognition accuracies. Thus, in this study, we present an end-to-end paragraph recognition system that incorporates internal line segmentation and gated convolutional layers based encoder. The gating is a mechanism that controls the flow of information and allows to adaptively selection of the more relevant features in handwritten text recognition models. The attention module plays an important role in performing internal line segmentation, allowing the page to be processed line-by-line. During the decoding step, we have integrated a connectionist temporal classification-based word beam search decoder as a post-processing step. In this work, we have extended existing LexiconNet by carefully applying and utilizing gated convolutional layers in the existing deep neural network. Our results at line and page levels also favour our new GatedLexiconNet. This study reported character error rates of 2.27% on IAM, 0.9% on RIMES, and 2.13% on READ-16, and word error rates of 5.73% on IAM, 2.76% on RIMES, and 6.52% on READ-2016 datasets.

Click here to read this post out
ID: 817066; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: