×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14077v1 Announce Type: new
Abstract: This project has conducted research on robot path planning based on Visual SLAM. The main work of this project is as follows: (1) Construction of Visual SLAM system. Research has been conducted on the basic architecture of Visual SLAM. A Visual SLAM system is developed based on ORB-SLAM3 system, which can conduct dense point cloud mapping. (2) The map suitable for two-dimensional path planning is obtained through map conversion. This part converts the dense point cloud map obtained by Visual SLAM system into an octomap and then performs projection transformation to the grid map. The map conversion converts the dense point cloud map containing a large amount of redundant map information into an extremely lightweight grid map suitable for path planning. (3) Research on path planning algorithm based on reinforcement learning. This project has conducted experimental comparisons between the Q-learning algorithm, the DQN algorithm, and the SARSA algorithm, and found that DQN is the algorithm with the fastest convergence and best performance in high-dimensional complex environments. This project has conducted experimental verification of the Visual SLAM system in a simulation environment. The experimental results obtained based on open-source dataset and self-made dataset prove the feasibility and effectiveness of the designed Visual SLAM system. At the same time, this project has also conducted comparative experiments on the three reinforcement learning algorithms under the same experimental condition to obtain the optimal algorithm under the experimental condition.

Click here to read this post out
ID: 817077; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: