×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14092v1 Announce Type: new
Abstract: Cell-free (CF) massive multiple-input multiple-output (mMIMO) is a promising technique for achieving high spectral efficiency (SE) using multiple distributed access points (APs). However, harsh propagation environments often lead to significant communication performance degradation due to high penetration loss. To overcome this issue, we introduce the reconfigurable intelligent surface (RIS) into the CF mMIMO system as a low-cost and power-efficient solution. In this paper, we focus on optimizing the joint precoding design of the RIS-aided CF mMIMO system to maximize the sum SE. This involves optimizing the precoding matrix at the APs and the reflection coefficients at the RIS. To tackle this problem, we propose a fully distributed multi-agent reinforcement learning (MARL) algorithm that incorporates fuzzy logic (FL). Unlike conventional approaches that rely on alternating optimization techniques, our FL-based MARL algorithm only requires local channel state information, which reduces the need for high backhaul capacity. Simulation results demonstrate that our proposed FL-MARL algorithm effectively reduces computational complexity while achieving similar performance as conventional MARL methods.

Click here to read this post out
ID: 817081; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: