×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14109v1 Announce Type: new
Abstract: In this paper, we present a simple yet effective contrastive knowledge distillation approach, which can be formulated as a sample-wise alignment problem with intra- and inter-sample constraints. Unlike traditional knowledge distillation methods that concentrate on maximizing feature similarities or preserving class-wise semantic correlations between teacher and student features, our method attempts to recover the "dark knowledge" by aligning sample-wise teacher and student logits. Specifically, our method first minimizes logit differences within the same sample by considering their numerical values, thus preserving intra-sample similarities. Next, we bridge semantic disparities by leveraging dissimilarities across different samples. Note that constraints on intra-sample similarities and inter-sample dissimilarities can be efficiently and effectively reformulated into a contrastive learning framework with newly designed positive and negative pairs. The positive pair consists of the teacher's and student's logits derived from an identical sample, while the negative pairs are formed by using logits from different samples. With this formulation, our method benefits from the simplicity and efficiency of contrastive learning through the optimization of InfoNCE, yielding a run-time complexity that is far less than $O(n^2)$, where $n$ represents the total number of training samples. Furthermore, our method can eliminate the need for hyperparameter tuning, particularly related to temperature parameters and large batch sizes. We conduct comprehensive experiments on three datasets including CIFAR-100, ImageNet-1K, and MS COCO. Experimental results clearly confirm the effectiveness of the proposed method on both image classification and object detection tasks. Our source codes will be publicly available at https://github.com/wencheng-zhu/CKD.

Click here to read this post out
ID: 817088; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 30
CC:
No creative common's license
Comments: