×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14159v1 Announce Type: new
Abstract: We give a simple, greedy $O(n^{\omega+0.5})=O(n^{2.872})$-time algorithm to list-decode planted cliques in a semirandom model introduced in [CSV17] (following [FK01]) that succeeds whenever the size of the planted clique is $k\geq O(\sqrt{n} \log^2 n)$. In the model, the edges touching the vertices in the planted $k$-clique are drawn independently with probability $p=1/2$ while the edges not touching the planted clique are chosen by an adversary in response to the random choices. Our result shows that the computational threshold in the semirandom setting is within a $O(\log^2 n)$ factor of the information-theoretic one [Ste17] thus resolving an open question of Steinhardt. This threshold also essentially matches the conjectured computational threshold for the well-studied special case of fully random planted clique.
All previous algorithms [CSV17, MMT20, BKS23] in this model are based on rather sophisticated rounding algorithms for entropy-constrained semidefinite programming relaxations and their sum-of-squares strengthenings and the best known guarantee is a $n^{O(1/\epsilon)}$-time algorithm to list-decode planted cliques of size $k \geq \tilde{O}(n^{1/2+\epsilon})$. In particular, the guarantee trivializes to quasi-polynomial time if the planted clique is of size $O(\sqrt{n} \operatorname{polylog} n)$. Our algorithm achieves an almost optimal guarantee with a surprisingly simple greedy algorithm.
The prior state-of-the-art algorithmic result above is based on a reduction to certifying bounds on the size of unbalanced bicliques in random graphs -- closely related to certifying the restricted isometry property (RIP) of certain random matrices and known to be hard in the low-degree polynomial model. Our key idea is a new approach that relies on the truth of -- but not efficient certificates for -- RIP of a new class of matrices built from the input graphs.

Click here to read this post out
ID: 817102; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: