×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14165v1 Announce Type: new
Abstract: This paper introduces an innovative approach to the design of efficient decoders that meet the rigorous requirements of modern communication systems, particularly in terms of ultra-reliability and low latency. We enhance an established hybrid decoding framework by proposing an ordered statistical decoding scheme augmented with a sliding window technique. This novel component replaces a key element of the current architecture, significantly reducing average complexity. A critical aspect of our scheme is the integration of a pre-trained neural network model that dynamically determines the progression or halt of the sliding window process. Furthermore, we present a user-defined soft margin mechanism that adeptly balances the trade-off between decoding accuracy and complexity. Empirical results, supported by a thorough complexity analysis, demonstrate that the proposed scheme holds a competitive advantage over existing state-of-the-art decoders, notably in addressing the decoding failures prevalent in neural min-sum decoders. Additionally, our research uncovers that short LDPC codes can deliver performance comparable to that of short classical linear codes within the critical waterfall region of the SNR, highlighting their potential for practical applications.

Click here to read this post out
ID: 817106; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: