×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14180v1 Announce Type: new
Abstract: We consider a voting problem in which a set of agents have metric preferences over a set of alternatives, and are also partitioned into disjoint groups. Given information about the preferences of the agents and their groups, our goal is to decide an alternative to approximately minimize an objective function that takes the groups of agents into account. We consider two natural group-fair objectives known as Max-of-Avg and Avg-of-Max which are different combinations of the max and the average cost in and out of the groups. We show tight bounds on the best possible distortion that can be achieved by various classes of mechanisms depending on the amount of information they have access to. In particular, we consider group-oblivious full-information mechanisms that do not know the groups but have access to the exact distances between agents and alternatives in the metric space, group-oblivious ordinal-information mechanisms that again do not know the groups but are given the ordinal preferences of the agents, and group-aware mechanisms that have full knowledge of the structure of the agent groups and also ordinal information about the metric space.

Click here to read this post out
ID: 817110; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: