×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14193v1 Announce Type: new
Abstract: The shift towards high-bandwidth networks driven by AI workloads in data centers and HPC clusters has unintentionally aggravated network latency, adversely affecting the performance of communication-intensive HPC applications. As large-scale MPI applications often exhibit significant differences in their network latency tolerance, it is crucial to accurately determine the extent of network latency an application can withstand without significant performance degradation. Current approaches to assessing this metric often rely on specialized hardware or network simulators, which can be inflexible and time-consuming. In response, we introduce LLAMP, a novel toolchain that offers an efficient, analytical approach to evaluating HPC applications' network latency tolerance using the LogGPS model and linear programming. LLAMP equips software developers and network architects with essential insights for optimizing HPC infrastructures and strategically deploying applications to minimize latency impacts. Through our validation on a variety of MPI applications like MILC, LULESH, and LAMMPS, we demonstrate our tool's high accuracy, with relative prediction errors generally below 2%. Additionally, we include a case study of the ICON weather and climate model to illustrate LLAMP's broad applicability in evaluating collective algorithms and network topologies.

Click here to read this post out
ID: 817115; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: