×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13265v1 Announce Type: cross
Abstract: As a prevalent and dynamically regulated epigenetic modification, 5-formylcytidine (f5C) is crucial in various biological processes. However, traditional experimental methods for f5C detection are often laborious and time-consuming, limiting their ability to map f5C sites across the transcriptome comprehensively. While computational approaches offer a cost-effective and high-throughput alternative, no recognition model for f5C has been developed to date. Drawing inspiration from language models in natural language processing, this study presents f5C-finder, an ensemble neural network-based model utilizing multi-head attention for the identification of f5C. Five distinct feature extraction methods were employed to construct five individual artificial neural networks, and these networks were subsequently integrated through ensemble learning to create f5C-finder. 10-fold cross-validation and independent tests demonstrate that f5C-finder achieves state-of-the-art (SOTA) performance with AUC of 0.807 and 0.827, respectively. The result highlights the effectiveness of biological language model in capturing both the order (sequential) and functional meaning (semantics) within genomes. Furthermore, the built-in interpretability allows us to understand what the model is learning, creating a bridge between identifying key sequential elements and a deeper exploration of their biological functions.

Click here to read this post out
ID: 817238; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: