×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2204.10888v2 Announce Type: replace
Abstract: Principal component analysis (PCA) is one of the most fundamental tools in machine learning with broad use as a dimensionality reduction and denoising tool. In the later setting, while PCA is known to be effective at subspace recovery and is proven to aid clustering algorithms in some specific settings, its improvement of noisy data is still not well quantified in general.
In this paper, we propose a novel metric called \emph{compression ratio} to capture the effect of PCA on high-dimensional noisy data. We show that, for data with \emph{underlying community structure}, PCA significantly reduces the distance of data points belonging to the same community while reducing inter-community distance relatively mildly. We explain this phenomenon through both theoretical proofs and experiments on real-world data.
Building on this new metric, we design a straightforward algorithm that could be used to detect outliers. Roughly speaking, we argue that points that have a \emph{lower variance of compression ratio} do not share a \emph{common signal} with others (hence could be considered outliers).
We provide theoretical justification for this simple outlier detection algorithm and use simulations to demonstrate that our method is competitive with popular outlier detection tools. Finally, we run experiments on real-world high-dimension noisy data (single-cell RNA-seq) to show that removing points from these datasets via our outlier detection method improves the accuracy of clustering algorithms. Our method is very competitive with popular outlier detection tools in this task.

Click here to read this post out
ID: 817304; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: