×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2307.02932v4 Announce Type: replace
Abstract: Learning with rejection has been a prototypical model for studying the human-AI interaction on prediction tasks. Upon the arrival of a sample instance, the model first uses a rejector to decide whether to accept and use the AI predictor to make a prediction or reject and defer the sample to humans. Learning such a model changes the structure of the original loss function and often results in undesirable non-convexity and inconsistency issues. For the classification with rejection problem, several works develop consistent surrogate losses for the joint learning of the predictor and the rejector, while there have been fewer works for the regression counterpart. This paper studies the regression with rejection (RwR) problem and investigates a no-rejection learning strategy that uses all the data to learn the predictor. We first establish the consistency for such a strategy under the weak realizability condition. Then for the case without the weak realizability, we show that the excessive risk can also be upper bounded with the sum of two parts: prediction error and calibration error. Lastly, we demonstrate the advantage of such a proposed learning strategy with empirical evidence.

Click here to read this post out
ID: 817366; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: