×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.16198v2 Announce Type: replace
Abstract: As an important clean and renewable kind of energy, wind power plays an important role in coping with energy crisis and environmental pollution. However, the volatility and intermittency of wind speed restrict the development of wind power. To improve the utilization of wind power, this study proposes a new wind speed prediction model based on data noise reduction technology, temporal convolutional network (TCN), and gated recurrent unit (GRU). Firstly, an adaptive data noise reduction algorithm P-SSA is proposed based on singular spectrum analysis (SSA) and Pearson correlation coefficient. The original wind speed is decomposed into multiple subsequences by SSA and then reconstructed. When the Pearson correlation coefficient between the reconstructed sequence and the original sequence is greater than 0.99, other noise subsequences are deleted to complete the data denoising. Then, the receptive field of the samples is expanded through the causal convolution and dilated convolution of TCN, and the characteristics of wind speed change are extracted. Then, the time feature information of the sequence is extracted by GRU, and then the wind speed is predicted to form the wind speed sequence prediction model of P-SSA-TCN-GRU. The proposed model was validated on three wind farms in Shandong Province. The experimental results show that the prediction performance of the proposed model is better than that of the traditional model and other models based on TCN, and the wind speed prediction of wind farms with high precision and strong stability is realized. The wind speed predictions of this model have the potential to become the data that support the operation and management of wind farms. The code is available at https://github.com/JethroJames/Wind-Speed-Forecast-TCN_GRU

Click here to read this post out
ID: 817429; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: