×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2401.04727v2 Announce Type: replace
Abstract: The machine learning community has witnessed a drastic change in the training pipeline, pivoted by those ''foundation models'' with unprecedented scales. However, the field of adversarial training is lagging behind, predominantly centered around small model sizes like ResNet-50, and tiny and low-resolution datasets like CIFAR-10. To bridge this transformation gap, this paper provides a modern re-examination with adversarial training, investigating its potential benefits when applied at scale. Additionally, we introduce an efficient and effective training strategy to enable adversarial training with giant models and web-scale data at an affordable computing cost. We denote this newly introduced framework as AdvXL.
Empirical results demonstrate that AdvXL establishes new state-of-the-art robust accuracy records under AutoAttack on ImageNet-1K. For example, by training on DataComp-1B dataset, our AdvXL empowers a vanilla ViT-g model to substantially surpass the previous records of $l_{\infty}$-, $l_{2}$-, and $l_{1}$-robust accuracy by margins of 11.4%, 14.2% and 12.9%, respectively. This achievement posits AdvXL as a pioneering approach, charting a new trajectory for the efficient training of robust visual representations at significantly larger scales. Our code is available at https://github.com/UCSC-VLAA/AdvXL.

Click here to read this post out
ID: 817463; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: