×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2402.15163v2 Announce Type: replace
Abstract: This paper presents the first systematic study of Deep Neural Network (DNN) evaluation under stochastic assumptions, focusing on wildfire prediction. We note that current evaluation strategies emphasize a DNN's replication of observed ground truths rather than its ability to learn the underlying stochastic processes, crucial for capturing wildfire evolution's complexity. To bridge this gap, we propose a novel evaluation criterion: Has the DNN learned the stochastic process? Using a synthetic dataset, we introduce a framework to characterize the stochastic process (generated by randomness in fire evolution rules). Through this framework, we assess an evaluation metric's capability to test if the DNN has learned the stochastic process. Our findings show that conventional metrics, including classification-based metrics and proper scoring rules, are inadequate. We identify the Expected Calibration Error (ECE) as a robust metric that tests the proposed evaluation criteria, offering asymptotic guarantees of proper scoring rules and improved interpretability through calibration curves. We extend our analysis to real-world wildfire data, highlighting the limitations of traditional evaluation methods and demonstrating the utility of ECE as a stochasticity-compatible metric alongside existing ones.

Click here to read this post out
ID: 817506; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: