×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.08965v2 Announce Type: replace
Abstract: Localizing text in low-light environments is challenging due to visual degradations. Although a straightforward solution involves a two-stage pipeline with low-light image enhancement (LLE) as the initial step followed by detector, LLE is primarily designed for human vision instead of machine and can accumulate errors. In this work, we propose an efficient and effective single-stage approach for localizing text in dark that circumvents the need for LLE. We introduce a constrained learning module as an auxiliary mechanism during the training stage of the text detector. This module is designed to guide the text detector in preserving textual spatial features amidst feature map resizing, thus minimizing the loss of spatial information in texts under low-light visual degradations. Specifically, we incorporate spatial reconstruction and spatial semantic constraints within this module to ensure the text detector acquires essential positional and contextual range knowledge. Our approach enhances the original text detector's ability to identify text's local topological features using a dynamic snake feature pyramid network and adopts a bottom-up contour shaping strategy with a novel rectangular accumulation technique for accurate delineation of streamlined text features. In addition, we present a comprehensive low-light dataset for arbitrary-shaped text, encompassing diverse scenes and languages. Notably, our method achieves state-of-the-art results on this low-light dataset and exhibits comparable performance on standard normal light datasets. The code and dataset will be released.

Click here to read this post out
ID: 817595; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: