×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12149v3 Announce Type: replace
Abstract: Intelligent vehicles have demonstrated excellent capabilities in many transportation scenarios, but the complex on-board sensors and the inference capabilities of on-board neural networks limit the accuracy of intelligent vehicles for accident detection in complex transportation systems. In this paper, we present AccidentBlip2, a pure vision-based multimodal large model Blip2 accident detection method. Our method first processes the multi-view through ViT-14g and inputs the multi-view features into the cross attention layer of the Qformer, while our self-designed Motion Qformer replaces the self-attention layer in Blip2's Qformer with the Temporal Attention layer in the In the inference process, the query generated in the previous frame is input into the Temporal Attention layer to realize the inference for temporal information. Then we detect whether there is an accident in the surrounding environment by performing autoregressive inference on the query input to the MLP. We also extend our approach to a multi-vehicle cooperative system by deploying Motion Qformer on each vehicle and simultaneously inputting the inference-generated query into the MLP for autoregressive inference. Our approach detects the accuracy of existing video large language models and also adapts to multi-vehicle systems, making it more applicable to intelligent transportation scenarios.

Click here to read this post out
ID: 817623; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: