×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.09173v2 Announce Type: replace-cross
Abstract: While quantum computing has a strong potential in data-driven fields, the privacy issue of sensitive or valuable information involved in the quantum algorithm should be considered. Differential privacy (DP), which is a fundamental privacy tool widely used in the classical scenario, has been extended to the quantum domain, i.e. quantum differential privacy (QDP). QDP may become one of the most promising avenues towards privacy-preserving quantum computing since it is not only compatible with the classical DP mechanisms but also achieves privacy protection by exploiting unavoidable quantum noise in noisy intermediate-scale quantum (NISQ) devices. This paper provides an overview of the various implementation approaches of QDP and their performance of privacy parameters under the DP setting. Concretely speaking, we propose a taxonomy of QDP techniques, categorized the existing literature based on whether internal or external randomization is used as a source to achieve QDP and how these approaches are applied to each phase of the quantum algorithm. We also discuss challenges and future directions for QDP. By summarizing recent advancements, we hope to provide a comprehensive, up-to-date survey for researchers venturing into this field.

Click here to read this post out
ID: 817687; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: