×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13681v1 Announce Type: cross
Abstract: This article introduces a new transcription, change point localization, and mesh refinement scheme for direct optimization-based solutions and for uniform approximation of optimal control trajectories associated with a class of nonlinear constrained optimal control problems (OCPs). The base transcription algorithm for which we establish the refinement algorithm is a $\textit{direct multiple shooting technique}$ -- $\mathsf{QuITO}$ $\textsf{v.2}$ (Quasi-Interpolation based Trajectory Optimization). The mesh refinement technique consists of two steps -- localization of certain irregular regions in an optimal control trajectory via wavelets, followed by a targeted $h$-refinement approach around such regions of irregularity. Theoretical approximation guarantees on uniform grids are presented for optimal controls with certain regularity properties along with guarantees of localization of change points by wavelet transform. Numerical illustrations are provided for control profiles involving discontinuities to show the effectiveness of the localization and refinement strategy. We also announce and make freely available a new software package developed based on $\mathsf{QuITO}$ $\textsf{v.2}$ along with its functionalities to make the article complete.

Click here to read this post out
ID: 817811; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: