×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14036v1 Announce Type: cross
Abstract: We investigate fast data aggregation via over-the-air computation (AirComp) over wireless networks. In this scenario, an access point (AP) with multiple antennas aims to recover the arithmetic mean of sensory data from multiple wireless devices. To minimize estimation distortion, we formulate a mean-squared-error (MSE) minimization problem that considers joint optimization of transmit scalars at wireless devices, denoising factor, and receive beamforming vector at the AP. We derive closed-form expressions for the transmit scalars and denoising factor, resulting in a non-convex quadratic constrained quadratic programming (QCQP) problem concerning the receive beamforming vector. To tackle the computational complexity of the beamforming design, particularly relevant in massive multiple-input multiple-output (MIMO) AirComp systems, we explore the optimal structure of receive beamforming using successive convex approximation (SCA) and Lagrange duality. By leveraging the proposed optimal beamforming structure, we develop two efficient algorithms based on SCA and semi-definite relaxation (SDR). These algorithms enable fast wireless aggregation with low computational complexity and yield almost identical mean square error (MSE) performance compared to baseline algorithms. Simulation results validate the effectiveness of our proposed methods.

Click here to read this post out
ID: 817821; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: