×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2309.07136v2 Announce Type: replace
Abstract: Electrocardiogram (ECG) is one of the most important diagnostic tools in clinical applications. With the advent of advanced algorithms, various deep learning models have been adopted for ECG tasks. However, the potential of Transformers for ECG data is not yet realized, despite their widespread success in computer vision and natural language processing. In this work, we present a useful masked Transformer method for ECG classification referred to as MTECG, which expands the application of masked autoencoders to ECG time series. We construct a dataset comprising 220,251 ECG recordings with a broad range of diagnoses annoated by medical experts to explore the properties of MTECG. Under the proposed training strategies, a lightweight model with 5.7M parameters performs stably well on a broad range of masking ratios (5%-75%). The ablation studies highlight the importance of fluctuated reconstruction targets, training schedule length, layer-wise LR decay and DropPath rate. The experiments on both private and public ECG datasets demonstrate that MTECG-T significantly outperforms the recent state-of-the-art algorithms in ECG classification.

Click here to read this post out
ID: 817832; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: