×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.03661v2 Announce Type: replace
Abstract: A DC OPF surrogate modeling framework is developed for Monte Carlo (MC) sampling-based risk quantification in power grid operation. MC simulation necessitates solving a large number of DC OPF problems corresponding to the samples of stochastic grid variables (power demand and renewable generation), which is computationally prohibitive. Computationally inexpensive surrogates of OPF provide an attractive alternative for expedited MC simulation. Graph neural network (GNN) surrogates of DC OPF, which are especially suitable to graph-structured data, are employed in this work. Previously developed DC OPF surrogate models have focused on accurate operational decision-making and not on risk quantification. Here, risk quantification-specific aspects of DC OPF surrogate evaluation is the main focus. To this end, the proposed GNN surrogates are evaluated using realistic joint probability distributions, quantification of their risk estimation accuracy, and investigation of their generalizability. Four synthetic grids (Case118, Case300, Case1354pegase, and Case2848rte) are used for surrogate model performance evaluation. It is shown that the GNN surrogates are sufficiently accurate for predicting the (bus-level, branch-level and system-level) grid state and enable fast as well as accurate operational risk quantification for power grids. The article thus develops tools for fast reliability and risk quantification in real-world power grids using GNN-based surrogates.

Click here to read this post out
ID: 817835; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: