×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13684v1 Announce Type: cross
Abstract: Near horizons, quantum fields of low spin exhibit densities of states that behave asymptotically like 1+1 dimensional conformal field theories. In effective field theory, imposing some short-distance cutoff, one can compute thermodynamic quantities associated with the horizon, and the leading cutoff sensitivity of the heat capacity is found to equal to the leading cutoff sensitivity of the entropy. One can also compute contributions to the thermodynamic quantities from the gravitational path integral. For the cosmological horizon of the static patch of de Sitter space, a natural conjecture for the relevant heat capacity is shown to equal the Bekenstein-Hawking entropy. These observations allow us to extend the well-known notion of the generalized entropy to a generalized heat capacity for the static patch of dS. The finiteness of the entropy and the nonvanishing of the generalized heat capacity suggests it is useful to think about dS as a state in a finite dimensional quantum gravity model that is not maximally uncertain.

Click here to read this post out
ID: 817895; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: