×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13867v1 Announce Type: cross
Abstract: Although measuring the deterministic waveform of a weak classical force is a well-studied problem, estimating a random waveform, such as the spectral density of a stochastic signal field, is much less well-understood despite it being a widespread task at the frontier of experimental physics. State-of-the-art precision sensors of random forces must account for the underlying quantum nature of the measurement, but the optimal quantum protocol for interrogating such linear sensors is not known. We derive the fundamental precision limit, the extended channel quantum Cram\'er-Rao bound, and the optimal protocol that attains it. In the experimentally relevant regime where losses dominate, we prove that non-Gaussian state preparation and measurements are required for optimality. We discuss how this non-Gaussian protocol could improve searches for signatures of quantum gravity, stochastic gravitational waves, and axionic dark matter.

Click here to read this post out
ID: 817898; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: