×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2212.13975v3 Announce Type: replace-cross
Abstract: Canonical quantization of the photon -- a free massless vector field -- is considered in cosmological spacetimes in a two-parameter family of linear gauges that treat all the vector potential components on equal footing. The goal is setting up a framework for computing photon two-point functions appropriate for loop computations in realistic inflationary spacetimes. The quantization is implemented without relying on spacetime symmetries, but rather it is based on the classical canonical structure. Special attention is paid to the quantization of the canonical first-class constraint structure that is implemented as the condition on the physical states. This condition gives rise to subsidiary conditions that the photon two-point functions must satisfy. Some of the de Sitter space photon propagators from the literature are found not to satisfy these subsidiary conditions, bringing into question their consistency.

Click here to read this post out
ID: 817919; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: