×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2307.14256v3 Announce Type: replace-cross
Abstract: The Large High Altitude Air Shower Observatory~(LHAASO) reported observation of photons with energies above 10~TeV from gamma-ray burst GRB 221009A. A suggestion was proposed that this result may contradict our knowledge of special relativity~(SR) and the standard model~(SM), according to which photons of about 10~TeV from such a distant object should be severely suppressed because of the absorption by extragalactic background light. As a result, a number of mechanisms have been proposed to solve this potential puzzle, including Lorentz invariance violation~(LIV). In this work, we perform a detailed numerical calculation and show the feasibility to constrain LIV of photons from the LHAASO observation of GRB 221009A quantitatively.

Click here to read this post out
ID: 817920; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: