×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13917v1 Announce Type: new
Abstract: In the decay process of metastable vacua in quantum field theories, the bounce solution, a classical solution in Euclideanized theories, is helpful in calculating the decay rate. Recently, the bounce solution with a conical singularity has attracted wide attention and revealed physical importance. In this paper, we discuss the bubble of nothing solution, which describes the decay process of a five-dimensional Kaluza-Klein vacuum, and study the consequence of including conical singularity. We found that the bounce solution with singularities has a higher decay rate than those without. This effect suggests that a singular solution can play a dominant role in vacuum decay of theories with compact internal space. We also discuss the enhanced decay rate from a thermodynamic perspective.

Click here to read this post out
ID: 818032; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: