×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14091v1 Announce Type: cross
Abstract: Our main objective is to compare the analytic properties of hydrodynamic series with the stability and causality conditions applied to hydrodynamic modes. Analyticity, in this context, implies that the hydrodynamic series behaves as a univalent or single-valued function. Stability and causality adhere to physical constraints where hydrodynamic modes neither exhibit exponential growth nor travel faster than the speed of light. Through an examination of various hydrodynamic models, such as the Muller-Israel-Stewart (MIS) and the first-order hydro models like the BDNK (Bemfica-Disconzi-Noronha-Kovtun) model, we observe no new restrictions stemming from the analyticity limits in the shear channel of these models. However, local univalence is maintained in the sound channel of these models despite the global divergence of the hydrodynamic series. Notably, differences in the sound equations between the MIS and BDNK models lead to distinct analyticity limits. The MIS model's sound mode remains univalent at high momenta within a specific transport range. Conversely, in the BDNK model, the univalence of the sound mode extends to intermediate momenta across all stable and causal regions. Generally, the convergence radius is independent of univalence and the given dispersion relation predominantly influences their correlation. For second-order frequency dispersions, the relationship is precise, i.e. within the convergence radius, the hydro series demonstrates univalence. However, with higher-order dispersions, the hydro series is locally univalent within certain transport regions, which may fall within or outside the stable and causal zones.

Click here to read this post out
ID: 818053; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 5
CC:
No creative common's license
Comments: