×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.01028v2 Announce Type: replace
Abstract: Two different methods are used to study the existence and stability of the (1+1)-dimensional $\Phi^4$ oscillon. The variational technique approximates it by a periodic function with a set of adiabatically changing parameters. An alternative approach treats oscillons as standing waves in a finite-size box; these are sought as solutions of a boundary-value problem on a two-dimensional domain. The numerical analysis reveals that the standing wave's energy-frequency diagram is fragmented into disjoint segments with $\omega_{n-1} < \omega < \omega_{n-2}$, where $\omega_n=\frac{2}{n+1}$. In the interval $(\omega_{n-1}, \omega_{n-2})$, the structure's small-amplitude wings are formed by the $n$-th harmonic radiation ($n=2,3, ...$). All standing waves are practically stable: perturbations may result in the deformation of the wave's radiation wings but do not affect its core. The variational approximation involving the first, zeroth and second harmonic components provides an accurate description of the oscillon with the frequency in $(\omega_1, \omega_0)$, but breaks down as $\omega$ falls out of that interval.

Click here to read this post out
ID: 818080; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: