×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13580v1 Announce Type: cross
Abstract: The interrelation between the concepts of self-consistency, relativism and many-particle systems is considered within the framework of a unified consideration of classical and quantum physics based on the first principle of the probability conservation law. The probability conservation law underlies the Vlasov equation chain. From the first Vlasov equation, the Schr\"odinger equation, the Hamilton-Jacobi equation, the equation of motion of a charged particle in an electromagnetic field, the Maxwell equations, the Pauli equation and the Dirac equation are constructed. The paper shows with mathematical rigor that quantum systems with a time independent function of quasi-density probability in phase space are not capable to emit electromagnetic radiation. It is shown that at the micro-level a quantum object may be considered rather as an {\guillemotleft}extended{\guillemotright} object than a point one. And the hydrodynamic description of continuum mechanics is applicable for such an object. A number of exact solutions of quantum and classical model systems is considered, demonstrating a new insight at the quantum mechanics representation.

Click here to read this post out
ID: 818375; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 14
CC:
No creative common's license
Comments: