×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14243v1 Announce Type: cross
Abstract: A series of graph filtering (GF)-based collaborative filtering (CF) showcases state-of-the-art performance on the recommendation accuracy by using a low-pass filter (LPF) without a training process. However, conventional GF-based CF approaches mostly perform matrix decomposition on the item-item similarity graph to realize the ideal LPF, which results in a non-trivial computational cost and thus makes them less practical in scenarios where rapid recommendations are essential. In this paper, we propose Turbo-CF, a GF-based CF method that is both training-free and matrix decomposition-free. Turbo-CF employs a polynomial graph filter to circumvent the issue of expensive matrix decompositions, enabling us to make full use of modern computer hardware components (i.e., GPU). Specifically, Turbo-CF first constructs an item-item similarity graph whose edge weights are effectively regulated. Then, our own polynomial LPFs are designed to retain only low-frequency signals without explicit matrix decompositions. We demonstrate that Turbo-CF is extremely fast yet accurate, achieving a runtime of less than 1 second on real-world benchmark datasets while achieving recommendation accuracies comparable to best competitors.

Click here to read this post out
ID: 818393; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: